
AlOps Unleashed: Transforming Cloud Operations at Microsoft Azure

Zhangwei Xu VP/Distinguished Engineer, Microsoft

Azure

The world's Al supercomputer

1b

Customers across enterprise + consumer segments

600±

Azure Resource types

15K+

Daily updates

160T

Terabits/sec. Marea: The highest capacity transatlantic subsea cable

79b

Events/min

76b

Active time series

240M

Queries/min for Metrics

286M

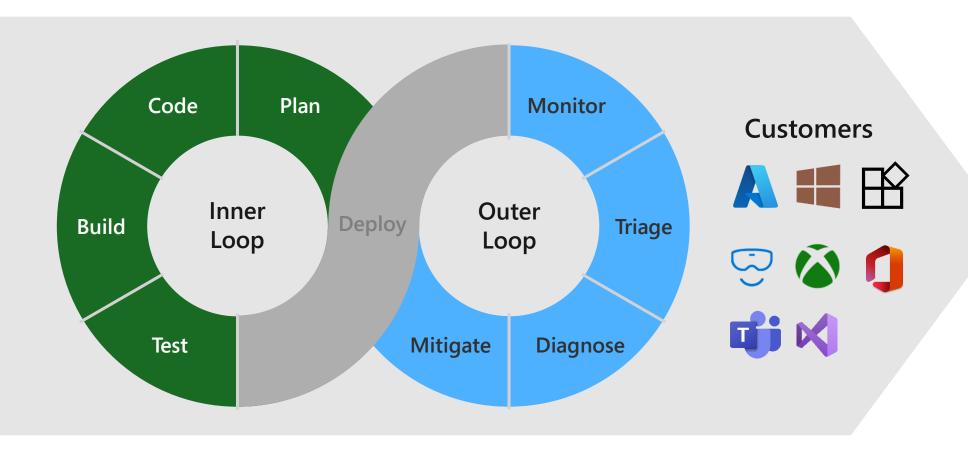
Resources monitored/min

66+

Azure regions

300+

Datacenters


175K+

Miles of fiber

190+

Network PoPs

Building and Operating Azure

Development

Operation

Operating Microsoft Clouds – The tools

Build Systems

Deployment Systems

Telemetry Platforms

Incident Management System

CI/CD Pipelines/Test platforms

Change Management Systems

Monitoring Systems

Diagnostic tools

Dev/Service **Environments**

Safe/Secure **Production Touch** systems

Inventory/Graphs

Analytics platforms

AlOps Systems

Documentations

Automation systems

Security/Auditing systems

Work Item Management tool

Challenges Facing Service Teams, Operator

Current state of the art monitoring systems

Handles large volume of telemetry data at scale with low latency

Provides a scalable platform to create targeted monitors & alerts

Provides incredible flexibility and sophistication to do data analysis & alerting

Today's systems require humans with intricate knowledge & expertise who understand the Service and the monitoring systems

Visibility

Understand what's going on at any given time

- Limited holistic health view
- Needs human interpretation for numerous metrics/logs
- Prone to alert storms

Scale & Efficiency

Global infrastructure and service(s) + High volume of tickets

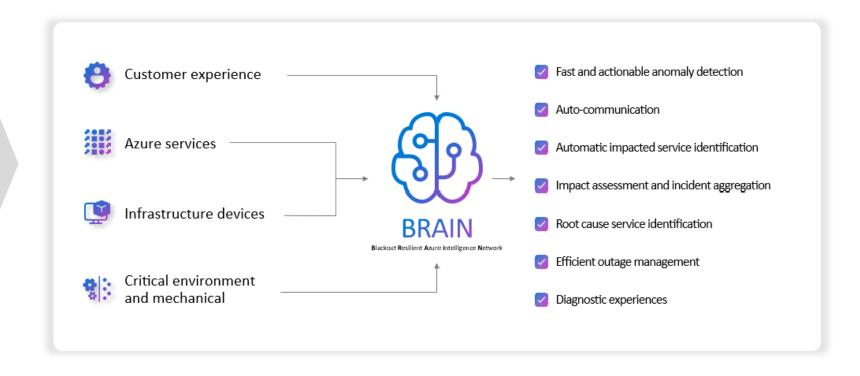
- Increasing number of monitors contributes to high noise (for Oncall engineers)
- Need to keep up with large volume of telemetry
- Need to manually manage monitors
- Rule based monitors are usually tricky to tune

Complexity

Fragmented and intricately connected services

- Require complex configuration, tuning and dashboarding skills
- Must manually create automation tasks & workflows
- Depends on human intelligence for quality assessment

Challenges


Azure AlOps Vision & Strategy

Significantly improve service reliability by preventing outages, minimize impact, and eliminate human toil

For 1P and 3P customers

- 1 Standardize and Centralize
 Standard signals (SLI), centralized digital
 twin, system wide health & monitoring
 (BRAIN)
- **Automate operations**Evaluate, assess, detect, troubleshoot, mitigate
- 3 Shift-left
 Prevent at source, Predict & mitigate before issues snowballs
- Leverage Al & ML

 Learn from changing conditions & handle complex environments
- **Extensible platform**Extensible ingestion & consumption experiences

BRAIN Components

Health

Holistic health

Accurate health signals incorporating all signals

Provide health signals for all other systems

Al Monitor

Monitors all telemetry

High precision/recall

Auto tuning

Auto configuration

Auto correlation

Multi-dimensional Anomaly Detection

Seamless Integration with traditional monitors

Al Automation

Auto outage declaration

Auto customer

communication

Auto Triage

Auto RCA

Auto Mitigation

Auto Deployment Health Check

Intelligent Engine

Self learning using all data sources

Uber DRI

Auto-TSG

Copilot experience

Al Monitors

Traditional monitors Al monitors

Traditional monitor	Area	Al Monitor
Manual	Setup	Automatically monitor all telemetry
Manual	Management	Auto managed
Reactive, Static rule	Trigger	Predictive, Dynamic, Adaptive
Fixed telemetry/dimension/query	Monitor approach	Multiple telemetry/dimension simultaneously
Manual	Tuning	Automatic
No	Learning	Continuous self learning based on feedback
Limited	Insights	Comprehensive health and alert enrichment
Limited or require other systems	Correlation	Built-in auto correlation
Manually configured	Action	Built-in intelligent automation

BRAIN benefits and results

68%

Time to outage reduction

45%

Time to mitigation reduction

58%

Time to notification reduction

25%

Incident noise reduction

AlOps Journey – War of Control, from ML to Al

ML
Recommendation
+ Simple
Automation

Al assistant

Al Automation

Full AlOps Intelligence

- Human engineers doing all work
- Review recommendations
- Pre-configured simple automation

- Human engineers doing most work
- More dynamic automations
- Replacing some rules

- Automating human actions powered by GenAl
- Based on human knowledge
- Operating human written code
- Generic rules engine
- Specialized agents

- Al operating Al written code
- Human engineers overseeing
- Self learning and evolving agents covering entire product lifecycle

Human and AI Collaboration

- Building trust
 - · Confidence erodes quickly and no single FP/failure accepted
- Control
 - Tendency to apply static rules which defeat the purpose
 - · Human override
- Explanation
 - · Need to understand why for everything
- Manual + Automation + Al
 - · Hybrid operation mode is the reality before full AIOps is achieved
- Knowledge extraction and learning
 - Tribal knowledge

Future of AlOps

- · Many of the Ops problems today can be attributed to human
 - · Changes, bugs, not following process, insufficient capacity
- · When AI writes all the code, will there still be Ops as we know today?
 - Self-operating code and systems
 - · Shift left to solve operation problems from the root
- Would AI create framework and principles?
 - Guiding principles
- · Auto-* Auto-scale, Auto roll-back, Auto update, Auto migration, Auto health/validation, Auto-monitoring