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Abstract
At eBay, there are thousands of product health metrics for dif-
ferent domain teams to monitor. We built a two-phase alert-
ing system to notify users with actionable alerts based on
anomaly detection and alert retrieval. In the first phase, we
developed an efficient anomaly detection algorithm, called
Moving Metric Detector (MMD), to identify potential alerts
among metrics with distribution agnostic criteria. In the sec-
ond alert retrieval phase, we built additional logic with feed-
backs to select valid actionable alerts with point-wise rank-
ing model and business rules. Compared with other trend
and seasonality decomposition methods, our decomposer is
faster and better to detect anomalies in unsupervised cases.
Our two-phase approach dramatically improves alert preci-
sion and avoids alert spamming in eBay production.

Introduction
Over the era of big data, large companies have the desire of
building automated alerting system to continuously monitor
the health of their sites and applications. Currently, many
solutions are proposed to serve their needs, including Al-
ibaba (Xu et al. 2018), Amazon (Guha et al. 2016), An-
odot (Toledano et al. 2018), Baidu (Sun et al. 2018), AT&T
(Yan et al. 2012), Facebook (Taylor and Letham 2018),
Google (Shipmon et al. 2017), LinkedIn, Microsoft (Ren
et al. 2019), Twitter (Hochenbaum, Vallis, and Kejariwal
2017), and Yahoo (Laptev, Amizadeh, and Flint 2015).

At eBay, product owners monitor various metrics every
day. Each metric potentially contains thousands of time se-
ries with different dimension aspects. To effectively monitor
these millions of time series and alert automatically, we de-
veloped a two-phase approach with anomaly detection and
alert retrieval to build eBay automated alerting system.

In our practice, there are three challenges for building the
automated alerting system:
• Lack of true alert labels: it is demanding for domain an-

alysts to label past anomalies in each time series for ma-
chine to learn,

• Scalability and efficiency: we need to detect millions of
time series every day and alert in time,
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• Avoid alert spamming: flooded alerts do not help users
since not all finding outliers are valid alerts to all users.

To tackle the first two challenges, a fast and robust time
series anomaly detection algorithm (MMD) is developed. It
firstly decomposes a metric time series to ”normal” patterns
(e.g. trend, seasonality) and a noise/residual part. To gauge
the noise level as well as filter out potential anomalies with-
out assuming particular distribution of the noise part, we use
Chebyshev’s Inequality to determine the anomaly criteria
that controls the overall false positive detection rate (type I
error outside “normal” range). At the end of the anomaly de-
tection phase, we obtained a list of time series with anoma-
lies that are potentially used to alert users.

Secondly, to increase precision of the potential alerts and
reduce alert spamming, we designed an alert retrieval frame-
work that takes input from the anomaly detection phase,
combined with additional rules and policies, to generate the
final ranked or prioritized alert list to notify users.

In recent years, many anomaly detectors are proposed
to tackle above issues, such as Isolation Forest (Liu,
Ting, and Zhou 2008), Argus (Yan et al. 2012), OC-SVM
(Amer, Goldstein, and Abdennadher 2013), EGAD (Laptev,
Amizadeh, and Flint 2015), Opprentice (Liu et al. 2015),
VAE (An and Cho 2015), RRCF (Guha et al. 2016), Donut
(Xu et al. 2018), SR-CNN (Ren et al. 2019) and ATAD
(Zhang et al. 2019). Our time-series anomaly detection fo-
cuses more on statistical model as Makridakis, Spiliotis, and
Assimakopoulos (2018) pointed out that the performance of
ML models is lower to that of statistical methods in time-
series area. Besides, many existing anomaly detection meth-
ods may cause alert spam since they only focus on anomalies
without considering the second phase to retrieve valid alerts.

In this paper, we first explain our two-phase approach, es-
pecially the efficient and robust moving metric detector; then
we discuss the evaluation of alert result and production per-
formance; and conclude with some discussion.

Approach
Let’s assume a business metric is measured daily and repre-
sented as a time series. Anomaly detection is to determine
if the last observation of the metric is significantly different
from what it is supposed to be given the past measurements



of the time series. In Figure 1, we illustrate the overall alert
detection and alert notification pipeline. The anomaly de-
tection phase comprises of time series signal decomposition
and statistical test for anomaly. The alert retrieval phase is to
filter out valid alert from recently detected anomalies found
in the previous phase.

Figure 1: The Two-Phase Alerting System.

Anomaly Detection Phase
Our basic assumption is that metric time series data should
contain mostly ”normal” observations than ”abnormal” ob-
servations, and we do not require the abnormal data being
labeled. In order to identify anomalies, the general scheme
is to learn the “normal” patterns in the time series and use
it as prediction to test if the last observation is within the
“normal” metric value range.

Time Series Decomposer As key part of anomaly detec-
tion phase, we decompose each time series to trend, season-
ality and residual parts. There are existing time series de-
composition implementations, however, they are either sen-
sitive to outliers because using moving average, e.g. classi-
cal decomposition (Kendall and Stuart 1983), or with high
computation cost of iterations, e.g. STL (Cleveland et al.
1990). To extract “normal” patterns from time series con-
taining sparse anomalies in the past but without labels, we
developed our moving metric decomposer using median to
extract robust trend and seasonality in the time series.

For a given time series X , we first do a rough estimate
of trend (L) using symmetric moving average with a sliding
time window (w), which is the number of observations per
cycle in the given time-series X . To estimate the w for each
metric, we applied a one-time signal frequency estimation
using ESPRIT method (Roy and Kailath 1989) since the fre-
quency of each metric rarely changes for almost all cases in
eBay. Using the trend L, we can discover seasonality and
reduce part of the variance in X .

Let’s define trend-removed time series as L
′
= X − L.

To extract a robust seasonality (S), we use the median of
historical periodic values of trend-removed time series L

′
,

instead of simple averaging which is sensitive to outliers.

St = median(L
′

t±iw|i ≤ τ, i ∈ N)

where w is the number of observations per cycle, i is the
number of cycles away from observation at t and τ is the
number of cycles near the observation at t that is used to
estimate seasonality St. In our case, we set τ as length of
the input time series X that contains all the observations.

With extracted seasonality S, we then estimate trend once
again from the seasonality-removed series as S

′
= X −

S. We ignore the first estimate of trend L and recompute

trend from S
′

as T in the following. Using right alignment
to calculate rolling median in a sliding time window (w),

T f
t = median(S

′

t−j |j ≤ w, j ∈ N)

where j is the number of observations previous to observa-
tion at t. The f indicates it is right alignment.

The right alignment rolling method naturally lags behind
current observations, so we estimated a potential bias term
using median in the following formula to model the lagging
effect. Hence, the extracted trend contains two terms,

T = T f +median(S
′
− T f ).

Compared with STL (Cleveland et al. 1990), which iter-
atively estimates trend and seasonality with inner loop and
outer loop to moderate outlier impact on trend and seasonal-
ity, our method first computes an approximated trend L and
extract seasonality S, and then extract the final trend T with
median as a robust replacement of average. Our method re-
quires less computation with better and robust performance.

Determine “Normal” Range of a Metric With time se-
ries decomposer, given time series X is decomposed into
trend (T ), seasonality (S) and residual (R), which is defined
as R = X − T − S. We detect anomaly as the most recent
observation in a time series whose value differs significantly
from the ”normal” prediction. To detect anomaly, we have to
calculate the “normal” range from the input time series X .

In many cases, the noise residual R is assumed to be
normally distributed. However, in our approach, we do not
assume “normal” residuals distribution, i.e., whether it is
Gaussian or not. By using Chebyshev’s Inequality, for any
real number k > 0,

P (|R− µ̂| ≥ kσ̂2) ≤ 1

k2

where the µ̂ is the expected value and σ̂ is the standard devi-
ation of the residual R. Using the above inequality formula,
we can define false positive criteria to differentiate anomaly
values outside of “normal” region.

The distribution-free “normal” range of X can be cal-
culated with a given expected probability p of seeing an
anomaly (Amidan, Ferryman, and Cooley 2005),

T + S + µ̂± kσ̂

where k = 1/sqrt(p).
To estimate the µ̂ and σ̂ for “normal” range, Hampel

(1974) pointed out that mean and standard deviation are
sensitive to outliers and Leys et al. (2013) suggested using
median and median absolute deviation (MAD) as robust re-
placements, as follow:

µ̂ = median(R)

σ̂ = b×median(|Rt −median(R)|)

where the robust standard deviation σ̂ is estimated by scaling
MAD with a constant b (commonly set as 1.4826).

Especially with our decomposition method, we have the
µ̂ = median(R) = 0 due to the extra added estimated bias
by median(S

′ − T f ). In our model, the k of the “normal”



range can be interpreted as the number of standard devia-
tions away from the prediction (T + S). With Chebyshev’s
Inequality, the “normal” range with p = 0.01 would be in-
terpreted as at most 1% probability of exceed the range with
k = 10. In this case, we identify anomaly if the value is
beyond 10 standard deviation away from prediction.

Alert Retrieval Phase
Not all anomalies are valid actionable alerts for all users. In
eBay practice, we can only send 10 alerts for each user ev-
ery day, otherwise it will cause alert spamming. In the alert
retrieval phase, we developed a ranking model and filtering
rules and polices to retrieve valid alerts.

Ranking of Anomalies To retrieve valid alerts and in-
crease precision, we created a point-wise anomaly ranking
algorithm with generalized linear ranking model to sort valid
alerts from identified anomalies. The ranking score has sev-
eral components, i.e.,

• Anomaly deviation severity feature computed using out-
puts from the previous phase as fd = |R− µ̂|/σ̂ .

• User defined 4-level priority (e.g. P1, P2, P3, P4) for each
metric as fp (one-hot encoding).

• Granularity of time series dimension aspect values as fg ,
which is the number of dimensions that not rolled up in
metric dimension hierarchy. For example, “Country: US”
has granularity fg = 1 and “Country: US, Device: PC”
has granularity fg = 2.

With above features, our ranking model is

g(p) = wdfd + wpfp + wgfg

where wp, wg and wd are the weight vector that can be
learned from users feedbacks. The g(p) is the ranking score
function considering both anomaly severity and importance.

Retrieval Logic and Rules Some anomalies that we de-
tected are true and valid alerts to users, however, they are
related and pointing to the same issue. From user perspec-
tive, it is one kind of alert spam if flooding very similar alerts
to user. As a business requirement to consider the alerts di-
versity, our retrieval mechanism combined the diversity of
the alerts and ranking score with following two steps:

• For each metric, detected anomalies are ranked by the
ranking score g(p). We take the top anomaly from the
list and compare the next highest ranked anomaly with
the top one by computing the absolute Pearson correla-
tion coefficient, if the coefficient is less than 0.9, which
implies different time series pattern, we include it in the
final alerts, if not we compare the next one on the list and
so on. Overall, we select two alerts for each metric.

• Retrieve at most 10 alerts across metrics and rank them
with score g(p) from selected anomalies in each metric.

To reduce spam, many business rules are proposed from
our user, such as stop alerting duplicated/similar anomalies
in recent k days and alerting after k days continuous exceed
interval, which archived good result in eBay.

Validation and Production Performance
To evaluate our approach, we crowdsourced alert labels from
product owners and domain analysts in eBay for a selected
set of metrics to collect alert feedbacks (valid alert or not).
Also, on our production environment, every alert that we
sent out, are triaged and labeled as a valid alert if it is a truly
useful and actionable issue with further investigation by the
domain analysts.

For the crowdsourced labels, we showed the time series to
some colleagues that labeled them independently. Here are
the details of our crowdsourced labeling setup:
• Each person had the same amount (15) of time series to

look at out of a pool of 164 different time-series.
• Each person was told to label all points that shall trigger

alert for each 7-month (from Jan to July) daily time series.
• While random, the allocation of time series was designed

in such a way that each metric was seen by at least two
people.
At the end of above alert crowdsourcing collection, we

received total 321 alert feedbacks from 38 different product
owners and domain analysts in eBay.

Crowdsourcing Labels Analysis
It turned out that people, when looking at data independently
have very differing views about what constituted a valid
alert, despite the fact that they were all given the exact same,
clear definition of an alert. In Figure 2, in approximately
over half of the crowdsourced alert labels there was no com-
mon agreement (agreement ratio ≤ 0.50) as to whether a
given data point was an alert or not. Here, the agreement ra-
tio of one alert is defined as the percentage of people who
labeled the observation as an alert over the people who saw
the time-series.

Figure 2: Histogram of Agreement Ratio.

To understand the lack of agreement situation, we talk
with domain analysts to build business rules to reduce spam-
ming. For example, some domain’s analysts do not expect
alerts on just the first day exceed interval since there service
exist auto-recovery mechanism, however, they are interested
in the 3 days continuous exceed interval, so we employed
the “alerting after k days continuous exceed interval” rule.



Validation of Anomaly Detection
To keep only good quality data, we introduced majority vote
rule (agreement ratio > 0.5) over the crowdsourced labels,
therefore excluding a fair share of data points that were ties.
Then, we compared our time series decomposition method
with classical method and STL on anomaly detection task
using our distribution-free “normal” range.

In order to weigh in recall more than precision during
anomaly detection phase, we choose F2-Score as measure-
ment since it focuses on recalling hundreds of potential alert
candidates out of millions. We tuned model parameters with
grid search that maximize the F2-Score for each anomaly de-
tection method using different time series decomposer with
data during Jan-May 2018, and ran the tuned model over an
unseen testing set (Jun-Jul 2018), which we had held aside.

Method Recall Precision F2-Score Processing Time

Classical 64.86% 28.92% 0.519 252.1ms
STL 59.46% 37.93% 0.534 156.8ms
Ours 72.97% 38.03% 0.616 90.3ms

Table 1: Performance comparison on crowdsourcing dataset.

Besides, we compared speed by using average process-
ing time for every 100 time-series (no parallel computing
enabled). The implementation of classical method and STL
are the decompose and stl functions in R Package stats. In
Table 1, our decomposer shows better F2-Score performance
over eBay Metrics with much faster processing speed.

Production Performance
Currently, our alert system monitors several million time-
series and process hundreds of gigabytes of data every day.
we implemented the two-phase solution on our private cloud
as several micro-services, such as the data-driven anomaly
detector, alerting rules tagger and ranking scorer. In figure 3,
Function as a Service (FaaS) framework is adopted to scale
up these micro-services as λ functions in the anomaly detec-
tion phase. Then, the alert retrieval phase leveraged the tags
and scores generated in the previous phase to filter and rank
anomalies according to domain analysts’ settings.

Figure 3: Architecture with Function as a Service Cluster.

With the 15 servers (each has 8 VCPUs and 16GB RAM)
FaaS cluster, Our anomaly detector can handle at least 6.4
thousand time-series per minutes, and we can easily scale
up the system by adding additional hardware if needed.

To evaluate our alert result, we built an evaluation system
to collect alert feedbacks that we sent out. Here, we com-

Approach Weeks #Alert #Valid Alert Precision

First Phase Only 10 164 67 40.85%
Two Phases 9 118 106 89.83%

Table 2: Production performance on valid alert precision.

pared the anomaly detection phase only with the two-phase
approach. As in Table 2, the extra alert retrieval phase dra-
matically improved the precision of valid alert.

Conclusion
To automate product health moving metric alert process
at eBay, we developed a two-phase approach to identify
anomalies and retrieve valid alerts for different domain
users. At anomaly detection phase, we developed the Mov-
ing Metric Detector (MMD), which contains a fast and ro-
bust time-series decomposition algorithm with better F2-
Score performance compared with classical method and
STL on anomaly detection task. We leverage Chebyshev’s
Inequality to determine a distribution-free “normal” range.
To avoid alert spamming and improve alert diversity, we de-
signed the alert retrieval phase with a point-wise ranking
model and business rules. Our alerting system is adopted by
users across eBay and proved to be an effective way to early
alarm issues for business needs.

Acknowledgments
We thank Rong Song, Christine Wu, Nathan Ni, Zhixuan Jia
for their insights and expertise that greatly assisted the re-
search, and continued support by eBay infrastructure orga-
nization. We would also like to show our gratitude to Giorgio
Ballardin, Woody Zhou, Liren Sun, Jianpeng Xu and Jiahui
Ruan for their stimulating discussions.

References
Amer, M.; Goldstein, M.; and Abdennadher, S. 2013.
Enhancing one-class support vector machines for unsuper-
vised anomaly detection. In Proceedings of the ACM
SIGKDD Workshop on Outlier Detection and Description,
8–15. ACM.
Amidan, B. G.; Ferryman, T. A.; and Cooley, S. K. 2005.
Data outlier detection using the chebyshev theorem. In 2005
IEEE Aerospace Conference, 3814–3819. IEEE.
An, J., and Cho, S. 2015. Variational autoencoder based
anomaly detection using reconstruction probability. Special
Lecture on IE 2(1).
Cleveland, R. B.; Cleveland, W. S.; McRae, J. E.; and Ter-
penning, I. 1990. Stl: a seasonal-trend decomposition proce-
dure based on loess. Journal of official statistics 6(1):3–73.
Guha, S.; Mishra, N.; Roy, G.; and Schrijvers, O. 2016. Ro-
bust random cut forest based anomaly detection on streams.
In International conference on machine learning, 2712–
2721.
Hampel, F. R. 1974. The influence curve and its role in
robust estimation. Journal of the american statistical asso-
ciation 69(346):383–393.



Hochenbaum, J.; Vallis, O. S.; and Kejariwal, A. 2017. Au-
tomatic anomaly detection in the cloud via statistical learn-
ing. arXiv preprint arXiv:1704.07706.
Kendall, M. G., and Stuart, A. 1983. The advanced theory of
statistics volume iii. Charles Griffin and Company Limited,
London and High Wycombe 242.
Laptev, N.; Amizadeh, S.; and Flint, I. 2015. Generic and
scalable framework for automated time-series anomaly de-
tection. In Proceedings of ACM SIGKDD Conference on
Knowledge Discovery and Data Mining.
Leys, C.; Ley, C.; Klein, O.; Bernard, P.; and Licata, L. 2013.
Detecting outliers: Do not use standard deviation around the
mean, use absolute deviation around the median. Journal of
Experimental Social Psychology 49(4):764–766.
Liu, D.; Zhao, Y.; Xu, H.; Sun, Y.; Pei, D.; Luo, J.; Jing,
X.; and Feng, M. 2015. Opprentice: Towards practical and
automatic anomaly detection through machine learning. In
Proceedings of the 2015 Internet Measurement Conference,
211–224. ACM.
Liu, F. T.; Ting, K. M.; and Zhou, Z.-H. 2008. Isolation
forest. In 2008 Eighth IEEE International Conference on
Data Mining, 413–422. IEEE.
Makridakis, S.; Spiliotis, E.; and Assimakopoulos, V. 2018.
Statistical and machine learning forecasting methods: Con-
cerns and ways forward. PloS one 13(3):e0194889.
Ren, H.; Xu, B.; Wang, Y.; Yi, C.; Huang, C.; Kou, X.;
Xing, T.; Yang, M.; Tong, J.; and Zhang, Q. 2019. Time-
series anomaly detection service at microsoft. arXiv preprint
arXiv:1906.03821.
Roy, R., and Kailath, T. 1989. Esprit-estimation of sig-
nal parameters via rotational invariance techniques. IEEE
Transactions on acoustics, speech, and signal processing
37(7):984–995.
Shipmon, D.; Gurevitch, J.; Piselli, P. M.; and Edwards, S.
2017. Time series anomaly detection: Detection of anoma-
lous drops with limited features and sparse examples in
noisy periodic data. Technical report, Google Inc.
Sun, Y.; Zhao, Y.; Su, Y.; Liu, D.; Nie, X.; Meng, Y.; Cheng,
S.; Pei, D.; Zhang, S.; Qu, X.; et al. 2018. Hotspot: Anomaly
localization for additive kpis with multi-dimensional at-
tributes. IEEE Access 6:10909–10923.
Taylor, S. J., and Letham, B. 2018. Forecasting at scale. The
American Statistician 72(1):37–45.
Toledano, M.; Cohen, I.; Ben-Simhon, Y.; and Tadeski, I.
2018. Real-time anomaly detection system for time series
at scale. In KDD 2017 Workshop on Anomaly Detection in
Finance, 56–65.
Xu, H.; Chen, W.; Zhao, N.; Li, Z.; Bu, J.; Li, Z.; Liu, Y.;
Zhao, Y.; Pei, D.; Feng, Y.; Chen, J.; Wang, Z.; and Qiao,
H. 2018. Unsupervised anomaly detection via variational
auto-encoder for seasonal kpis in web applications. In Pro-
ceedings of the 2018 World Wide Web Conference, WWW
’18, 187–196. Republic and Canton of Geneva, Switzer-
land: International World Wide Web Conferences Steering
Committee.

Yan, H.; Flavel, A.; Ge, Z.; Gerber, A.; Massey, D.; Pa-
padopoulos, C.; Shah, H.; and Yates, J. 2012. Argus: End-
to-end service anomaly detection and localization from an
isp’s point of view. In 2012 Proceedings IEEE INFOCOM,
2756–2760. IEEE.
Zhang, X.; Lin, Q.; Xu, Y.; Qin, S.; Zhang, H.; Qiao, B.;
Dang, Y.; Yang, X.; Cheng, Q.; Chintalapati, M.; Wu, Y.;
Hsieh, K.; Sui, K.; Meng, X.; Xu, Y.; Zhang, W.; Shen, F.;
and Zhang, D. 2019. Cross-dataset time series anomaly
detection for cloud systems. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), 1063–1076. Renton,
WA: USENIX Association.


