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Abstract

Nowadays, optimizing capacity is becoming a critical and hot
topic for cloud computing. At LinkedIn, to understand and
forecast service capacity needs, especially for stateful ser-
vices, we developed an end-to-end machine learning frame-
work, called CapPredictor. CapPredictor can predict capacity
headroom of system1 and workload2 variables based on pro-
duction requirement of service performance metrics3. Eval-
uation on production data demonstrates that CapPredictor is
very effective.

1 Introduction
LinkedIn serves more than 660 million members on a global
computing infrastructure through hundreds of internal ser-
vices. With releases of new product features, infrastructure
upgrades, and organic traffic growth, it is important to ac-
curately predict the capacity needs of services and hence
provide sufficient resources in a timely manner. The task is,
however, extremely challenging due to the complex and dy-
namic nature of cloud computing.

There are two main categories of services: stateful and
stateless. Stateless services only have stateless operations,
in which the returned contents solely depend on inputs. Usu-
ally, such services are deployed on machines that could per-
form identical tasks. Stateful services, on the other hand,
support stateful operations, of which the outputs depend on
not only inputs but also internal states. Data services are typ-
ical stateful services, because replicas of data partitions are
mixed and distributed in different machines of which each
machine is a distinct entity and hence the operations will al-
ways be stateful.
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1System variables are resource factors of the system such
as cpu and/or memory usage, disk I/O, garbage collection (GC)
count/time, JVM thread counts, and etc.

2Workload variables are the operation loads on the system such
as read/write query count per second (QPS), read and write key
count per second (KPS), read and write throughput, and etc.

3System performance metrics are the measurements used to
quantify and monitor system behavior and performance, such as
latency, errors etc.

Traditionally, one can leverage load tests by redirecting
site traffic to a subset of machines, increasing the load on
any single machine to estimate the capacity needs for state-
less services. For example, LinkedIn has been using Red-
liner (Xia and Rao 2017) for a few years to identify capac-
ity need for stateless services. However, we can not apply
this kind of mechanism to stateful services directly, because
it is futile to redirect traffic to machines where target data
does not reside. Instead, one needs to duplicate site traffic
in order to increase workload meaningfully, which is a dif-
ficult task. In addition, there are many workload and system
variables could affect service performance, and, obviously,
running tests on each variable can not scale.

In this paper, we propose CapPredictor, a generic ma-
chine learning framework that predict capacity headroom by
extrapolating the relationship between service performance
metrics and system/workload variables. CapPredictor dif-
fers from the typical machine learning model in that it does
not predict the service performance within the domain of
the observed system or workload variables, but predict what
is likely to happen beyond observation (e.g., larger QPS
reads that the server has not seen). To this end, CapPredictor
models the data generating process using a smooth func-
tion which can be reasonably extrapolated. For easier under-
standing of the capacity needs, we present a single variable
CapPredictor which extrapolates on one influencing vari-
able, but the methodology can be extended to multiple vari-
able easily and we leave it to future work.

The contributions of this paper can be summarized as fol-
lows:

1. To the best of our knowledge, this paper is the first study
to understand capacity of stateful services in cloud envi-
ronment.

2. CapPredictor is the first generic and end-to-end machine
learning framework to predict capacity headroom of state-
ful services.

2 Related Work
DevOps (Kim et al. 2016) has been widely adopted as a
method for facilitating continuous development and release
of services. The ever-increasing scale and complexity of ser-
vices pose significant challenges to engineers on building



services efficiently. Under this scenario, a new term, AIOps
(Lerner 2017), was proposed to address DevOps’ challenges
with artificial intelligence (AI), especially in cloud comput-
ing environment. Recent research and applications on AIOps
have shown great potential in constraint detection, resource
optimization, and capacity planning (Li and Dang 2019;
Dang, Lin, and Huang 2019; Chen et al. 2019).

Our work falls in the realm of capacity planning (Menasce
and Almeida 2001). It is comprised of two sub-areas: (1)
understanding how various workloads impact service per-
formance; (2) forecasting workload needs (Zhuang et al.
2015). The former focuses on estimating the relationship be-
tween performance and other variables, while the latter tries
to accurately project workload growth on a quarterly/yearly
basis. For the second category, there exist some success-
ful stories in industry. For example, Facebook has devel-
oped a customized suite of forecasting models, including
Bayesian time series models and deep learning models, to
forecast data center demands (Krishnamurthy and Kelkar
2018). Similar work has been done at Google and Amazon
(Llamas 2016; Krazit 2017). The first category, which is the
focus of this paper, has been relatively less explored. One
use case is Uber’s work (Boone 2018) on leveraging quan-
tile regression to predict CPU utilization based on trips oc-
curred. Our approach has two extensions compared to theirs.
First, we relax the linear assumption of the underlying rela-
tionship function to only assume its smoothness; second, we
extrapolate the relationship to predict beyond the observed
workload and system variable range to facilitate immediate
capacity planning.

Compared to the stateless services, the stateful services
require some type of persistent storage that will survive ser-
vice restarts, and the data query and operations may vary
from service to service. There are some research done in
this area to model the relationship between specific query
semantics and their impact on the system performance. Li
et al. (2012) modeled resource usage at the level of individ-
ual query operators, with different models and features for
each operator type, and explicitly model the asymptotic be-
havior of each operator. Marcus and Papaemmanouil (2019)
introduced the “plan-structured neural network” for query
performance prediction, which reduced the need for human-
crafted input features. Others have studied the system ar-
chitectures that streamline query scheduling at scale (Xu,
Cole, and Ting 2019; Liu et al. 2019; Sun and Li 2019). Our
approach does not investigate the specific stateful services
but rely on the key system and workload variables tracked
within the system. Therefore, the framework is applicable
for any stateful service. In this paper, we will focus on the
capacity prediction of stateful services, but it is applicable to
the simpler stateless services as well.

3 Proposed Approach
3.1 Overview

Here we measure the capacity of a stateful service by its
headroom, the percentage increase in workload a service
could hold while satisfying its Service Level Objective

(SLO)4. Denote Xi an example workload/system variable,
xi its workload value, x0 its current workload,HXi its head-
room, and y the measure of service performance. We have

HXi =
max(xi|y < SLO)− x0

x0
(1)

To estimate headroom at the service level (HS), we first es-
timate the headroom for each system or workload variable
(HXi ). Then, the service level headroom would be that of
the most constrained variable.

HS = min
Xi∈X

HXi (2)

where X denotes the set of system and workload variables
{X1, X2, . . . , Xn}.

Figure 1 illustrates the architecture of our proposed end-
to-end pipeline. It consists of 4 modules.

1. Data preprocessing module: Collect the historical time se-
ries of service performance and workload variables (usu-
ally at 1-minute or 5-minute granularity), and aggregate
to the desired level, e.g., machine node or cluster level.

2. Variable selection module: Select among hundreds of
tracking variables to include for estimation.

3. Headroom estimation and model selection module: Eval-
uate the performance of a set of model candidates to select
the best model for final estimation.

4. Headroom insights module: Summarize headroom esti-
mation and other insights into reports and dashboards.

Figure 1: CapPredictor End-to-End Pipeline

3.2 Data Preprocess
In this module, users can define the level of aggregation that
they care about. For some use cases, users might be inter-
ested in the 99th latency percentile across all machines, be-
cause breaking of one machine may not cause a serious is-
sue. In such cases, the data preprocess module could aggre-
gate data from the machine level to the service level, based
on user defined aggregation methods. In other cases, break-
ing of one machine would cause problems on the whole ser-
vice, therefore understanding the headroom at the machine
level is critical.

4One way of defining SLOs is for latency at the 99th percentile.
That is, an SLO of 10 milliseconds would mean that 99 out of 100
queries should return data within 10ms.



3.3 Variable Selection
There are hundreds of system and workload variables
tracked for each service, many of which are highly corre-
lated. For efficiency concerns as well as the ability to ex-
plain, it is helpful to reduce the dimension of the variable
space if some variables are highly correlated or have limited
impact on performance measures. This module provides two
sets of results:

• Calculate the Pearson correlation between each variable
and the performance variable, and only keep the top k in-
fluencing variables for investigation.

• Provide groups of highly correlated variables for domain
experts to select from. Within each group, the impact
of member variables on the performance measures could
largely overlap.

3.4 Headroom Estimation and Model Selection
To estimate HX , the first step is to predict performance
changes based on x. We assume

y = F (X) + ε, (3)

where ε denotes some independent observation noise. Our
goal is to estimate function F (·), which can be done us-
ing historical observed data such as {yi,xi}Ni=1. Note that,
what’s special here compared to regular regression problem
is that we would like to estimate F beyond the observed do-
main of {xi}Ni=1.

This is an extrapolation problem, which is in itself chal-
lenging since we need to predict beyond the data range
we have seen. Machine learning models such as trees are
not helpful here since they cannot extrapolate. A good can-
didate for extrapolation is a linear model, which assumes
the form F (X) = β0 +

∑
i βixi. Using Ordinary Least

Squares (OLS) regression, we estimate the parameters β =
(β0, .., βi, ...)’s through minimizing the squared errors such
that β̂ = argminβ

∑
i(yi − β0 −

∑
i βixi))

2. βi reflects the
speed at which latency increases (decreases) as xi increases.
The higher the βi’s, the faster would y reach to SLO.

Under the linear model assumption, y is assumed to
change with x’s with constant speed. This is a rather strict
assumption and is usually violated in reality. A natural ex-
tension is to assume F (x) = β0 +

∑
i βixi +

∑
i γix

2
i to

allow nonlinearity. But what if we don’t want to specify up-
front the parametric format of the model? The generalization
is to only assume the smoothness of F (·), which can be esti-
mated using Gaussian Process Regression (GPR) (Williams
and Rasmussen 2006).

More specifically, a Gaussian Process defines a distribu-
tion over functions, which can be completely specified by
its mean function m(x) and covariance function (kernel)
k(x, x′)

F (x) ∼ GP (m(x), k(x,x′)) (4)

A Gaussian process is like an infinite-dimensional multi-
variate Gaussian distribution, where any collection of data
observations are jointly Gaussian distributed. We assume
m(x) = 0 and use the radial basis function (RBF) ker-
nel to model covariance, which can be parametrized by

η = (φ, `1, ..., `d):

kη(x,x
′) = φ2 exp

(
−1

2

d∑
i=1

(xi − x′i)2

`2i

)
(5)

which controls the smoothness of the function F . Based
on observed data, we can estimate F̂ (x) and its confidence
bound. The prediction uncertainty would increase with re-
spect to extrapolation distance beyond the x domain, which
can be reflected in larger confidence intervals.

Maximum Load from Confidence Interval No matter
using linear or GPR estimation, F (·) only estimates the ex-
pected average of latency given a hypothetical x, whereas
we usually care more about the more extreme cases, for ex-
ample, the 90th or 95th percentile. We define the maximum
load of variable x, x∗, to be a value such that the probability
of y being smaller than SLO is larger than q.

P (y < SLO|x∗) > q (6)
If q = 0.975, it means the probability of observing a y

above the SLO value should be smaller than 2.5%. This is
equivalent to requiring the upper bound of the 95% confi-
dence interval of ŷ given x∗ to be equal to the SLO value.
That is how we find x∗.

Figure 25 illustrates the estimated and extrapolated mean
and confidence interval from a GPR model. The underlying
data would be introduced in Section 4. The blue dots indi-
cate data we used for training the model F (·), and the green
dots indicate the hold out set. The predicted average latency
is represented by the orange line, with its 95% confidence
interval in shaded orange. The horizontal dotted red line in-
dicates the SLO. Its intersection with the confidence interval
at the upper bound indicates the maximum load x∗. With the
maximum load and the current max (or any projected future
traffic), we can use equation (1) to calculate headroom.

Figure 2: Determine Max Load from Confidence Interval

Deal with distribution Skewness Both OLS and GPR
have the assumption that the residuals ε follow a normal
distribution. Their prediction power, especially for the con-
fidence interval, would drastically degrade if the dependent

5The axes are re-scaled to (0, 1) for illustration purpose only.



variable y is highly skewed, which could be the case once
the system is under some stress. Figure 3 shows such a case.
For the hold out set (the green triangles), the 90th percentile
(P90) is only 0.38, whereas P97.5 is as high as 0.66. The
data is highly skewed. If we use GPR on the raw data, we
will predict a very narrow 95% confidence interval centered
at the mean, with the P97.5 estimated at 0.10.

Figure 3: Confidence Interval Estimation on Skewed Data

To address this issue, we formulate a module called
“rolling quantiles generator” which process the data in 2
steps:

1. Sample N data points from raw data. Rank the sample
along x, take a rolling window of T and get the quantile
q of the rolling window for each x value. Call this newly
generated feature the “rolling quantile”.

2. Repeat step 1 forB times. Pool the sampled data together.

After this module, we feed the “rolling quantiles” as
y variables into the headroom estimation model. Figure 4
shows the 97.5th percentile estimation using the “rolling
quantiles” method on the same data as in Figure 3. It is much
closer to the true 97.5th percentile in the data.

Figure 4: Rolling Quantile Estimation on Skewed Data

To decide whether to incur the “rolling quantiles genera-
tor”, we calculate the skewness of y and use a threshold6 to

6The default skewness threshold is set at 1 as the rule of thumb.
Users are free to tune it.

decide whether the data is skewed. This step is illustrated in
the left panel of Figure 5.

Evaluation We now discuss how we select out the best
model. As illustrated in Figures 2-4, when training, we can
hold out the proportion of data with higher x values. On the
testing domain of x, we calculate recall and precision based
on the overlap ratio between the predicted distribution range
and the actual range of the performance variable.

Recall =

∑
j I(yj ∈ Ĉ ∩ y ∈ C)∑

j I(yj ∈ C)
(7)

Precision =

∑
j I(yj ∈ C ∩ y ∈ Ĉ)∑

j I(yj ∈ Ĉ)
(8)

Ĉ is the estimated distribution range of ŷ on the testing set,
and C is the actual distribution range of y. For example, let
τ denote percentile, then C = [τ25, τ75] if we are looking at
the range between the 25th and 75th percentile.

Finally, we can combine recall and precision into the F1
score to get our final evaluation metric for model selection,
and the final model to be used would be the one with the
highest F1 score on the hold out set.

Figure 5: Inside Headroom Estimation and Model Selection

3.5 Headroom Insights
We have now generated the headroom numbers for variables
X. To better understand the numbers, there are two follow-
up questions.

First, what we cannot explain? The residual ε from equa-
tion (3) contains all the information that cannot yet be ex-
plained. Looking at Figure 4, we want to understand given
an x value, why latency has such high dispersion? This prob-
lem is no longer an extrapolation task so we can resort to
more complicated non-parametric models such as trees, to
help us understand the effects coming from any additional
workload/system variables given the level of the extrapola-
tion variable x.

Second, we want to distinguish the most influencing vari-
able from the workload variable we care about. Often in re-
ality, the workload variable that we care most about is not
necessarily the variable that is most correlated with latency.
In this case, we need one more step to link the variable we
care about to the variables that matter most.

For example, we have found that for some key-value
stores, solid state drive (SSD) I/O is driving read latency: We
can always identify SSD write or read as the most important



system variables on read latency, but not the read QPS it-
self. After comparing results from different data stores, we
found that what matters is whether the underlying data has
enough distinct keys which requires intensive SSD I/O oper-
ations. This understanding helps us more accurately provide
headroom numbers given different use case characteristics.

4 Case Study
In this section, we illustrate a case study on one data service
at LinkedIn, Venice. Venice (Yan 2017) is a distributed key-
value data serving platform. It has two tiers when serving
data: the router layer distributes queries to the server layer,
which contains storage nodes that hold the corresponding
partition of data, and returns the stored values.

The router and server variables can be collected at 5-
minute intervals. Table 1 shows a list of the important work-
load and system variables that are tracked.

Variable Explanation
Latency 99 percentile among all queries within 5 min

* We focus on read latency throughout
Read QPS Single get or batch get queries per second
Read KPS Keys queried per second
Throughput Including inbound and outbound
SSD I/O SSD write/read in bytes
GC Garbage collection related variables
JVM threads JVM thread count
Memory Percentage of free memory

Table 1: Important workload/system variables for Venice

We show results for two data sets. The first one, which we
call production data, are collected for a Venice production
cluster in July 2019. As mentioned in Section 1, it is hard
to do load tests for stateful services. Therefore other than
the hold out testing data set, there is very little we can do
on production to validate our model. To better validate and
stress the model under different scenarios, we resort to the
experiment cluster, which is comprised of a set of machines
used for testing. We try to mimic real production traffic and
system settings on this cluster, and generate synthetic SSD
I/O and data queries. In particular, we pushed SSD read to be
much higher than what we see in production, while holding
SSD write on par with production7. We also put read KPS to
levels much higher than production. The data collected from
this experiment setting is called experiment data.

4.1 Results
Figure 6 shows the feature selection module for the produc-
tion data. Through simple correlation, we see that data push
related variables affect read latency the most. Therefore we
illustrate the headroom estimation for the top influencing
variable, SSD Write Bytes, in Figure 2. Figure 7 shows our
fit of the relationship between read latency and read KPS,
which is a direct measure of traffic directed to Venice.

From Figure 2, we see a clear trend between SSD write
and latency (read). For read KPS, although there is an up-

7In production, SSD write in bytes is 10 times that of SSD read.

Figure 6: Feature Report for Production Data

Figure 7: Latency v.s. Read KPS on Production Data

ward trend at the very top of the observed workload, the con-
fidence interval is rather wide. Overall, there does not seem
to be a clear pattern between read latency and read traffic.
This seemingly surprising finding turns out to be consistent
with the service constraint. Venice is data push heavy (SSD
write bytes being 10 times that of read), and during each
batch push, there would be high GC which blocks data read,
causing read latency to increase (Liu 2018).

Variable Recall Precision
Production Data
Read KPS 1.00 0.29
SSD Write 0.92 0.92
Experiment Data
Read KPS 1.00 1.00
SSD Read 0.95 0.98

Table 2: Evaluation Metrics

Table 2 shows the evaluation metrics (see definitions in
Section 3.4). We look at recall and precision in terms of the
overlap ratio of the 2.5 - 97.5 distribution range. For read
KPS, since the latency interval of the test data can all be
covered by the predicted interval, recall is 1. However, pre-
cision is very low, echoing a wide predicted range, which
indicates high uncertainty from the extrapolation. For SSD
write, on the other hand, we see high recall and precision.

On the experiment cluster, we deliberately stress the



Figure 8: Latency v.s. Read KPS on Experiment Data

server nodes with SSD read. The feature report now does
rank SSD read related variables as the top features. And as
shown in Figures 8 and 4, both SSD Read and Read KPS
now affect latency significantly. Looking at Table 2, we also
see both high precision and recall8.

5 Conclusion and Future Work
In this paper, we propose CapPredictor, an generic and
end-to-end machine learning framework that predicts per-
formance based capacity headroom for stateful services in
cloud. CapPredictor has been applied to several stateful data
services at LinkedIn, such as Venice(Yan 2017), Pinot(Im et
al. 2018), and Espresso(Auradkar 2015). In addition to head-
room prediction, CapPredictor also provides insights into
the key variables that affect service performance. For ex-
ample, we found that key-value stores are usually SSD I/O
bound, whereas SQL (or no-SQL) based stores are usually
CPU bound. Thus, understanding how read/write traffic af-
fect SSD I/O or CPU computation is important for providing
further actionable suggestions.

In the near future, we plan to extend CapPredictor in
the following aspects. First, tunable hardware configurations
could be added as system variables, enabling configuration
recommendations under over- or under-provision capacity
settings. Second, multi-variable smooth function could be
utlized in CapPredictor and hence to improve headroom pre-
diction. We would also like to use anomaly detection tech-
niques to detect and explain the anomalous signals which
are quite common in production data.
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